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Abstract: Computational lithography (CL) has become an indispensable technology to improve 

imaging resolution and fidelity of deep sub-wavelength lithography. The state-of-the-art CL 

approaches are capable of optimizing pixel-based mask patterns to effectively improve the degrees 

of optimization freedom. However, as the growth of data volume of photomask layouts, 

computational complexity has become a challenging problem that prohibits the applications of 

advanced CL algorithms. In the past, a number of innovative methods have been developed to 

improve the computational efficiency of CL algorithms, such as machine learning and deep 

learning methods. Based on the brief introduction of optical lithography, this paper reviews some 

recent advances of fast CL approaches based on deep learning. At the end, this paper briefly 

discusses some potential developments in future work. 
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1. Introduction 

Optical lithography is a crucial technology to 

manufacture the integrated circuits (IC) in 

semiconductor industry. Figure 1(a) shows the 

schematic diagram of a typical deep-ultraviolet 

(DUV) optical lithography system, which is used to 

transfer the IC layouts from photomask onto wafer [1, 

2]. The illumination of DUV lithography system 

emits the light rays with 193nm wavelength, which 

pass through the optical lens and uniformly 

illuminate the photomask. The transmitted light rays 

from mask are collected by the projection optics, and 

then form the aerial image on the wafer. On the top 

surface of wafer there is a thin layer of photo-

sensitive material, namely photoresist that is exposed 

and developed. Finally, the IC layout pattern is 

replicated on the wafer after etch process. 

As the critical dimensions (CD) continuously 

shrink, computational lithography has been widely 

used to improve the resolution of wafer image and 

extend the life of Moore’s Law [3]. Computational 

lithography refers to a set of technologies that design 

and optimize lithography systems and processes 

through mathematical and algorithmic approaches. 

Inverse lithography technology (ILT) is a 

representative computational lithography approach 

that compensates image distortion by pre-warping 

the photomask patterns. ILT regards the mask pattern 

as a binary pixelated image, where the zero-valued 

and one-valued pixels represent opaque and 

transparent regions, respectively. Figure 1(b) 

presents an illustration of ILT method [4]. Pixel-based 

ILT greatly improves the degrees of freedom in mask 

optimization, so it can effectively improve the 

imaging performance of lithography systems. 

In the past, researchers have proposed a number 

of gradient-based algorithms to solve the ILT 

problems [6, 7]. For instance, Liu et al. compensated 

the image distortion for both binary mask and phase-

shifting mask using the branch and bound algorithm, 

as well as the simulated annealing algorithm [8]. 

Sherif et al. proposed a binary mask optimization 

method for incoherent diffraction-limited imaging 

system, where the problem was formulated as a 

mixed linear integer program (MLIP), and then the 

branch and bound method was used to solve the 

problem [9]. Granik et al. formulated ILT as nonlinear, 

constrained minimization problems over a domain of 

mask pixels, and then applied local variation and 

gradient descent methods to quickly solve ILT 

problems [4]. Poonawala et al. proposed a set of 

gradient-based algorithms and regularization 

methods to solve the ILT problem in coherent 

lithography imaging system [7]. However, traditional 

gradient-based ILTs have to face with the great 
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Figure 1. (a) The sketch of deep ultraviolet optical lithography system, and (b) the illustration of ILT method 

(revised from Fig. 1 in Ref. [5]). 

 

challenges of large amount of computation and low 

efficiency [10].  

In order to overcome the computational 

complexity, many machine learning techniques have 

been applied to accelerate the ILT algorithms [11]. 

Wang et al. used machine learning to efficiently 

generate sub-resolution assist features (SRAF) on 

full-chip layout at 20nm technology node, and 

achieved a high imaging accuracy [12]. Guajardo et al. 

used machine learning methods to jointly optimize 

the main features (MF) and SRAFs [13]. Ma et al. 

proposed fast mask optimization algorithms based on 

non-parametric kernel regression, which can 

effectively improve the computational efficiency and 

mask manufacturability [14]. Xu et al. proposed a fast 

SRAF generation method that involved support 

vector machines (SVM) and logistic regression 

models in the complete mask optimization process 
[15]. K. Luo et al. and R. Luo et al. respectively 

proposed fast mask optimization methods based on 

SVMs [16] and multilayer perceptual neural networks 
[17].  

Due to the high nonlinearity of ILT problem, 

traditional machine learning methods have their 

inherent limitations. For instance, traditional 

machine learning methods often require a large 

number of training samples to accurately construct 

the nonlinear mapping between the IC layout and the 

corresponding ILT solution [10]. In the latest decade, 

deep learning has become the forefront of fast ILT 

approaches, since it can properly fit any complex 

nonlinear function [18]. This paper will describe and 

discuss in detail several ILT methods based on deep 

learning. 

The rest of this paper is organized as follows. 

Section 2 summarizes the ILT methods based on 

standard deep learning approaches, and Section 3 

describes and discusses several ILT methods based 

on a radically new learning method, namely model-

driven convolution neural network (MCNN). The 

paper will be concluded in Section 4. 

2. ILT based on Standard Deep 

Learning 

Deep learning has been used to solve a series of 

problems in computational lithography, for example 

the defect characterization and classification of 

masks based on convolutional neural networks [19], 

and hotspots correction based on the cycle-consistent 

generative adversarial network [20]. Lan et al. 

proposed a new technique to apply deep neural 

networks in GPU-accelerated mask optimization 

platform, which provided a fast and accurate ILT 

solution for 10nm and below technology nodes [21]. 

Shi et al. proposed an optimal feature vector 

automatic design method based on convolution 

neural network (CNN), which greatly improved the 

computational efficiency of ILT [22]. Chen et al. used 

Auto Pattern Selection (APS) tool to train the 

Newron SRAF deep learning network and 

successfully realized the inverse mask optimization 

on full-chip layout [23]. As examples, this section will 

detail two ILT methods based on variational 

autoencoder (VAE) [24] and generative adversarial 

network (GAN) [25]. 
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Figure 2. The (a) architecture of VAE, (b) control points, and (c) the optimized mask and print image obtained 

by VAE method (revised from Figs. 1, 7 and 10 in Ref. [24]). 

 

2.1. ILT using VAE 

In 2018, Zhang et al. proposed a mask design 

method based on a widely used deep learning 

framework, i.e., variational autoencoder [26]. As 

shown in Fig. 2(a), VAE is composed of an encoder 

and a decoder. In the VAE method, a large number 

of mask patterns are used as the training data set, 

which can be obtained in advance through other 

methods. Here, the mask patterns of the training data 

are obtained by adding or removing rectangular 

features at some control points on the target layout, 

as shown in Fig. 2(b). The network regards the mask 

and the corresponding print image as the input data 

pair, which is transferred to the encoder to obtain 

latent variables that satisfy the Gaussian distribution. 

Then, the latent variables are sampled from the 

Gaussian distribution, and processed by the decoder 

to obtain the output data pair. At the beginning, the 

VAE network is trained to learn the relationship 

between the mask patterns and their corresponding 

print images. This is implemented by minimizing the 

distance between the input of encoder and the output 

of decoder. If a new latent variable is obtained by 

sampling the Gaussian distribution, the decoder will 

generate a new data pair. After that, the optimal 

latent variable is found to minimize the error 

between the print image and the target layout, and 

then the optimized mask will be calculated according 

to the optimal latent variable Figure 2(c) shows the 

optimized mask and the corresponding print image 

obtained by the VAE method. Although VAE 

improves the efficiency of mask design process, it is 

necessary to collect a large number of training data 

through other methods. 

2.2. ILT using GAN  

In 2018, Yang et al. proposed a mask 

optimization method, also called optical proximity 

correction (OPC), based on a generative adversarial 

network model to improve the imaging performance 

of lithography system [27]. This method modifies the 

conventional GAN generator by using an auto-

encoder, which is composed of an encoder and a 

decoder, as shown in Figs. 3(a) and 3(b). The 

modified generator can learn the nonlinear mapping 

between the target layout and OPC solution. The 

discriminator in Fig. 3(c) is responsible for 

distinguishing the true dataset from the OPC 

solutions emulated by the generator. In order to 

further improve the prediction capacity of generator, 

the GAN-OPC network is pre-trained by an ILT-

guided method. After the network is trained, the 

OPC solution can be obtained by inputting the target 

layout into the generator, followed by a refinement 

process via a gradient-based ILT method, as shown 

in Fig. 4(a). Figure 4(b) illustrates the simulation 

results of the GAN-OPC method. 
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Figure 3. The (a) generator of conventional GAN, the (b) generator of the proposed GAN-OPC method, and the 

(c) discriminator of the proposed GAN-OPC method (adopted from Figs. 3 and 4 in Ref. [25]). 
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Figure 4. The (a) workflow and the (b) simulation results of the proposed GAN-OPC method (adopted from 

Figs. 6 and 8 in Ref. [25]). 

 

3. ILT based on Model-Driven Deep 

Learning 

The two methods described in Section 2 were 

migrated from the standard deep learning networks, 

which were modified slightly to adapt to mask 

optimization problem. This section describes the ILT 

methods developed recently based on a new kind of 

deep learning approach called MCNN. 

3.1. Model-Driven Convolution Neural Network 

In 2018, Ma et al. introduced the principles of 

MCNN to computational lithography realm. The 

MCNN was used to provide an initial guess of ILT 

solution for a given layout pattern, and then the 

steepest descent (SD) algorithm can be used to refine 

the mask pattern and further reduce the lithography 

image distortion [5]. The MCNN network is not 

inherited from existing deep learning architecture, 

but derived from a general inverse optimization 

model. In addition, MCNN provides a systematic 

initialization method for the network parameters 

based on the mathematical model of optimization 

problem. That is where the network’s name came 

from. In this approach, the network structure of 

MCNN was constructed by unfolding and truncating 

the SD-ILT algorithm [28], as shown in Figs. 5(a) and 

5(b). The network parameters were systematically 

initialized according to the imaging model of 

lithography system. As shown in Fig. 5(c), the 

lithography imaging model was used as a decoder, 

which allows to train the MCNN in an unsupervised 

manner. The unsupervised training method is 

beneficial to avoid the time-consuming labelling 

process that plagues many machine learning 

architectures. The MCNN leads to much faster 
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Figure 5. (a) The flowchart of SD-ILT algorithm, (b) the encoder of MCNN, and (c) the decoder of MCNN 

(revised from Figs. 3 and 4 in Ref. [5]). 
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Figure 6. Comparison between MCNN and SD approaches (revised from Figs. 10 and 11 in Ref. [5]). 

 

convergence than the SD algorithm, and its pattern 

error (PE) is smaller as shown in Fig. 6  

3.2. Dual-Channel Model-Driven Deep Learning 

Recently, Ma et al. generalized the prior MCNN 

method to a dual-channel model-driven deep 

learning (DMDL) method. The DMDL approach 

outperforms traditional ILT algorithms in terms of 

both computational efficiency and image fidelity [29]. 

Similar to MCNN, the network structure of DMDL 

is derived from the SD-ILT model as shown in Figs. 

7(a) and 7(b). However, DMDL approach formulates 

the mask pattern as the superposition of MFs and 

SRAFs. Thus, the DMDL network divides the data 

flow into two parallel channels as shown in Fig. 7(b), 

which are used to predict the optimization results of 

MFs and SRAFs, respectively. Therefore, DMDL 

method can successfully insert SRAFs on mask to 

improve the image fidelity of lithography system. As 

shown in Fig. 7(c), the DMDL approach uses an 

unsupervised training strategy, where the lithography 

imaging model serves as the decoder. In addition, the 

DMDL can effectively alleviate the gradient 

vanishing problem and extend the depth of network, 

which greatly improves its prediction capacity. It 

was proven that for simple layout patterns, DMDL 

method was capable of obtaining the ILT solution 

directly, and did not require the subsequent 

refinement process. As shown in Fig. 8, the DMDL 

approach can achieve higher image fidelity 

compared to the traditional SD method. 

4. Conclusion and Discussion 

This paper briefly described the concepts of 

computational lithography, and then reviewed the 

development of some ILT lgorithms. This paper 

focused on the description and discussion on the fast 

ILT methods based on deep learning. Due to the 

length limitation, we selected a set of representative 

methods to introduce. Deep learning brings 

opportunities for the advances of novel 

computational lithography methodologies. In the 
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Figure 7. (a) The flowchart of SD-ILT algorithm, (b) the encoder of DMDL, and (c) the decoder of DMDL 

(revised from Figs. 3 and 4 in Ref. [29]). 
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Figure 8. Comparison between DMDL and SD approaches (revised from Figs. 8-10 in Ref. [29]). 

 

 

future, different deep learning frameworks may be 

introduced and applied to solve for computational 

lithography problems, including ILT and source-

mask optimization (SMO). How to exploit the 

synergy between the existing deep learning 

approaches and model-based deep learning 

approaches may be an interesting topic to study. In 

addition, several other aspects may have 

considerable impacts on the applications of those 

deep learning methods, including generation of 

reliable training data sets or sample libraries, as well 

as the effective and efficient training methods.
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