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Abstract: Yield control in the integrated circuit manufacturing process is very important, and 

defects are one of the main factors affecting chip yield. As the process control becomes more and 

more critical and the critical dimension becomes smaller and smaller, the identification and 

location of defects is particularly important. This paper uses a machine learning algorithm based 

on transfer learning and two fine-tuned neural network models to realize the autonomous 

recognition and classification of defects even the data set is small, which achieves 94.6% and 

91.7% classification accuracy. The influence of network complexity on classification result is 

studied at the same time. This paper also establishes a visual display algorithm of defects, shows 

the process of extracting the deep-level features of the defective image by the network, and then 

analyze the defect features. Finally, the Gradient-weighted Class Activation Mapping technology 

is used to generate defect heat maps, which locate the defect positions and probability intensity 

effects. This paper greatly expands the application of transfer learning in the field of integrated 

circuit lithography defect recognition, and greatly improves the friendliness of defect display. 
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1. Introduction 

Defect reduction is particularly critical during 

the integrated circuit (IC) manufacturing process. At 

the lithography process stage, the rapid identification 

and correct classification of defects can help reduce 

the impact of defects and give a diagnostic result 

from the process. Defects are mostly caused by the 

environment, materials, processes, and so on, such as 

environmental airflow, the characteristic change of 

the materials, unreasonable changes of the 

equipment or incomplete cleaning steps, etc., which 

finally affect the process yield. Therefore, correct 

identification of defects and improvement of the 

accuracy and efficiency of defect identification are 

particularly critical for process control, and are also 

the key to competition with existing core equipment. 

In traditional lithography defect recognition, optical 

and electron microscopy imaging technologies are 

the most commonly used defect recognition 

technologies. It is based on image recognition 

technology to analyze and classify response signals. 

The size of defects that can be identified by optical 

measurement technology is relatively large, i.e. the 

level of micrometers and above. While electron 

microscopy imaging technology, such as the EBI or 

review machine, take the machine of ASML HMI for 

example [1], recognizes the defects by comparing 

different chip images. Through the continuous 

shrinking of the process, the defect control is 

becoming more and more stringent, which prompt 

engineers to use low-magnification and large field of 

view electronic scanning technology, and perform 

rapid comparison through spatial feature analysis [2]. 

The limitation of this method is that the types of 

defect cannot be automatically classified, and the 

size of the identifiable defect also be greatly 

restricted. Therefore, exploring a detection system 

that can quickly, efficiently and autonomously 

identify a variety of lithography defects is an 

important challenge for the yield of IC 

manufacturing. 

At present, there have been many researches on 

the problem of lithography defect identification. In 

2012, G. Luan [3] invented a method for identifying 

wafer defects using light sources and sensor devices. 

This device replaces the sensing unit of the sensor by 

judging the size of the crystal grain, so that the 
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surface pattern of the crystal grain is correctly 

identified, thereby improving the accuracy of defect 

detection. In 2015, M. Wu and J. Chen et al. [4] used 

Support Vector Machine (SVM) algorithm to detect 

wafer defects under large-scale data set conditions, 

which significantly improved the defect recognition 

performance of the model. In 2019, D. Patel, R. 

Bonam et al. [5] aimed at line/space (L/S) structure 

defects, compared the fully connected layer and the 

global average pooling layer when constructing the 

Convolutional Neural Networks, analyzed the effects 

of the two output layer architectures on the 

recognition results, and realize the accurate and fast 

classification of L/S defects. So far, most of the 

related researches have used traditional image 

processing methods to identify large-scale defective 

images, and the procedures are complicated and 

cumbersome. Some of them use neural network to 

identify defects with small feature spans, which is 

relatively simple. It is rare to use transfer learning to 

identify multiple defects with a small-scale and a 

large feature span. 

This paper carries out lithography defects 

detection based on transfer learning. By introducing 

two VGG Convolutional Neural Networks, 

autonomous analysis, feature extraction and data 

training will be carried out for defective image 

samples. By showing the visualized intermediate 

activation of the two networks [6], the process of 

extracting the deep-level features of the defective 

image are analyzed, which explores the learning 

mechanism of the network, and improve the 

classification accuracy. The use of Grad-CAM 

technology [7] achieves the autonomous rapid 

location of defects at the same time. This method 

will be used to improve the existing defect detection 

system in the field of IC manufacturing and improve 

the efficiency of autonomous identification. 

2. Method 

2.1. Transfer Learning and Convolutional Neural 

Networks (CNN) 

Transfer learning [8] is a technology widely used 

in the field of image recognition. The advantage of 

this technology is that it can make full use of the pre-

training model similar to the target task, and adjust 

the network structure and parameters through very 

few images to realize the rapid identification and 

recognition of defects classification. In the field of 

deep learning, it is impractical to use a small data set 

to train your own neural network from scratch. Due 

to the lack of data and too few learnable features, it 

usually leads to severe over-fitting (the performance 

of the model on the training set is much better than 

validation set and test set, which means a poor 

generalization ability). And transfer learning can 

solve this problem well through fine-tuning the 

general model that has been trained with a large data 

set, and then retraining a target model using the 

small data set. 

The premise of transfer learning is to find a pre-

trained neural network model similar to the target 

problem, and to modify the model parameters by 

limiting the training level and using a very small 

number of training images. In this paper, using a pre-

trained CNN is very effective [9]. Pre-trained network 

has the characteristics of large original data sets and 

excellent performance on small data sets. And the 

CNN is a type of Feedforward Neural Networks with 

a deep structure whose main feature is convolution 

calculation. It has a clear structure and is suitable for 

transfer learning. In CNN, the two-dimensional 

convolution of the input image and the convolution 

kernel can be defined as: 

( ) ( ) ( )

( ) ( )
m n

s i, j = X *W i, j

= x i+m, j +n w m,n         (1) 

In the formula, X represents the input image, W 

represents the convolution kernel, and the right side 

of the equation represents the process of multiplying 

and adding the overlapping elements when the 

convolution kernel slides through the image [10]. As 

shown in Figure 1, when performing the convolution 

operation, the convolution kernel (green part) of size 

3×3 slides through the image matrix of size 5×5 with 

a step length of 1, and the pixel values of the 

overlapping part are correspondingly multiplied and 

then added. Repeat this process until the entire image 

is traversed. Then, the convolution feature with the 

same size as the kernel can be obtained. 

 
Figure 1. Example of convolution operation 

 

CNN has strong generalization ability, because 

it can allow the complexity of samples to a greater 

extent, and can well adapt to defective images with 

larger feature spans. CNN also has strong learning
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Figure 2. Working principle diagram of recognition algorithm. 

 

Table 1. Comparison between fine-tuned VGG16 and VGG19 model structures. 

 

 Fine-tuned 

 

Zero-padding 

Number of layers 

Convolution 

 

Max Pooling 

 

GAP 

 

 Softmax 

VGG16 13 13 5 1 1 

VGG19 16 16 5 1 1 

 

 

ability. For an image without any preprocessing, the 

network will extract the characteristic layer by layer, 

learn the effective features and send it to the solver 

to get the result. The biggest difference between 

CNN and traditional network is that the former has a 

negative feedback mechanism, which can realize the 

self-evaluation and improvement of the network 

during the weights update process. 

 

2.2. Identification Algorithm 

Figure 2 illustrates the working principle flow of 

the recognition algorithm. With the fine-tuned neural 

network model, the overall realization principle of 

the recognition algorithm is as follows: 

1. Input images into the fine-tuned neural network; 

2. Calculate the network prediction value of the 

image for each class; 

3. Use the loss function to measure the gap 

between the network predicted value and the 

true target value; 

4. Pass this "gap" to the optimizer and update the 

network weights in the reverse direction; 

5. Repeat the above operations until the network 

loss value is no longer decreasing; 

6. Output the classification results. 

 

2.2.1. The Structure and Working Principle of the 

Fine-Tuned Neural Network 

The VGG16 and VGG19 [11] neural network 

models used in this study are both no-top structures, 

and the weights have been pre-trained on the large 

ImageNet data set for transfer learning. 

Table 1 shows the comparison between the fine-

tuned VGG16 and VGG19 model structures, from 

left to right are the names of the network layers. It 

can be seen that the latter is higher than the former in 

terms of model complexity. Compared with other 

models, the VGG model have a clear structure and is 

more suitable for transfer learning of small data sets. 

Figure 3 shows the basic structure and working 

principle of the VGG model after the structure is 

fine-tuned. Each cube with a black border represents 

the feature maps of the image, and each cube with a 

green border represents the convolution kernel. First, 

use zero-padding at the edge of the input matrix to 

prevent the edge information of the image from 

being lost. Then use convolution kernel with a size 

of 3×3 to help the network obtain nonlinear features 

through convolution operations, and improve the 

model performance by deepening the number of 

network layers. The Max Pooling with a size of 2×2 

and a stride of 2 is used to sequentially reduce the 
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Figure 3. Fine-tuned VGG neural networks.  

number of neurons after each convolution, which can 

not only achieve down-sampling and reduce 

computational costs, but also retain the salient 

features of the input image. After multiple 

convolution and max pooling iterations, the extracted 

last feature maps are connected to the Global 

Average Pooling (GAP) layer [12] to regularize the 

structure of the entire network to reduce the risk of 

over-fitting occurs. Finally, the GAP layer is 

connected to the Softmax Classifier [13] to realize the 

output of the predicted class of the input image. 

2.2.2. Trainable Properties of the Fine-tuned Model 

If the pre-trained network is directly used, the 

amount of network parameters are very large, and in 

the case of extremely limited training data set, it is 

difficult for the model to capture rich image features. 

The more training parameters, the greater the risk of 

overfitting. Usually before transfer learning, freezing 

layer is the basic operation of fine-tuned neural 

network [14]. Freeze refers to setting the trainable of 

the layer to false. As the network fits the data, the 

weight remains unchanged. If the freezing operation 

is not performed before training, the features learned 

by the network will be modified due to the random 

initialization of the weights, and a large number of 

weight updates will be propagated in the network, 

which will cause great damage to the previously 

learned image features and affect the performance of 

the model. Therefore, freezing is essential in the 

fine-tuned process. 

With the gradual deepening of the number of 

layers, the features extracted by the layers become 

more and more abstract. Layers closer to the bottom 

contain more information about image vision, so 

these layers encode more general reusable features; 

layers closer to the top contain more information 

about classification, so these layers encode more 

specialized features. Since this study needs to use a 

pre-trained network for the classification of defective 

images, the layers closer to the bottom of the fine-

tuning will have less return, and the layers closer to 

the top are more useful to fine-tune. Therefore, this 

study only fine-tuning the last three convolutional 

layers and freezes the previous layers. 

2.2.3. Optimization Algorithm of Neural Network 

The core optimization algorithm of neural 

network is Backpropagation (BP). Because the 

neural network has too many layers, it is necessary 

to pass the network loss layer by layer from the 

output to the input through the BP algorithm, and 

update the network parameters in real time [15]. This 

needs to pass the decreasing loss value to the 

optimizer, and update the weight of the network in 

the reverse direction, so that the network gradually 

optimizes its own performance, and then realizes the 

negative feedback of the network.  

The specific principle of BP algorithm is 

gradient descent, so that the network loss value 

continuously converges to the global (or local) 

minimum. Since the gradient direction is the fastest 

direction in which the loss value increases, the 

negative gradient direction is the fastest direction in 

which the loss value decreases. Iterate step by step 

along the direction of the negative gradient to 

quickly converge to the minimum. This is the basic 

principle of the gradient descent method. 

The loss function is a feedback signal used to 

learn the weight tensor. In the training phase, the 

smaller the loss value, the smaller the interval 

between the network predicted value and the true 

mark of the sample, and the stronger the model's 

ability to fit the data. It is an important indicator to 

measure the degree of match between the predicted 

value of the network and the true value. This model 

uses Cross Entropy Loss Function to calculate the 

cross-entropy loss through the probability output of 

the predicted class and the one-hot encoding of the 

true class. The function realization process can be 

expressed by the following: 

1

1 1
log( )

M

i ic ic

i i c

L L y p
N N =

= = −           (2) 
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Figure 4. Schematic diagram of visualizing the intermediate activation. 

 

In the formula, L represents the average of the loss 

value iL of i samples, M  represents the number of 

classes, icy  is the symbolic variable (0 or 1, if the 

class is the same as the sample i , then 1 is taken, 

otherwise it is 0), icp  represents the sample i  

belongs to the predicted probability of class c . 
The optimizer used in this model is RMSprop, 

which has been proven to be an effective and 

practical deep learning network optimization 

algorithm. It combines the exponential moving 

average of the gradient square to adjust the change of 

the learning rate, thereby adaptively adjusting the 

gradient size in each direction, which can help the 

network to converge well when the loss function is 

unstable: 

1 / ( )t t t tg    −= −  +              (3) 

t represents the weight at time t ,  represents the 

learning rate, the default value is 0.001, tg  

represents the gradient at time t, t  represents the 

exponential moving average of the gradient square, 

  is a constant and the value is 10-8 to avoid the 

divisor being 0. 

Since the indicator is the ultimate manifestation 

of the model output purpose, and the model deals 

with is the classification problem, the indicator is 

classification accuracy. 

 

2.3. Visualization Algorithm 

The visualization algorithm includes visualizing 

the intermediate activation and the Gradient-

weighted Class Activation Mapping (Grad-CAM). 

Visualizing the intermediate activation can 

eliminates the "black box" characteristics of the 

neural network, it helps to analyze which features of 

the defective image make the final classification 

decision. In the case of a classification error in the 

model, the decision-making process of the network 

can be debugged. Grad-CAM can realize the 

autonomous location of defects, which is of great 

significance for improving the automatic control 

system of integrated circuit manufacturing. 

2.3.1. Visualizing the Intermediate Activation 

Visualizing the intermediate activation is to 

draw each channel of the output feature maps of the 

layers into a two-dimensional image, which is used 

to show the process of extracting the deep features of 

the defective image by the network [16]. As shown in 

Figure 4, the image is input to the activation model 

based on the saved model. Then return the output to 

get the activation value of the middle layer of the 

saved model. Finally, post-processing can show the 

visualized intermediate activation. 

2.3.2. Grad-CAM 

Grad-CAM can generate a heat map 

highlighting the focal area of the model for the 

output feature map of the network. As shown in 

Figure 5, the principle of Grad-CAM is: given an 

input image, for the output feature map of a 

convolutional layer, use the gradient of the class 

relative to the channel to weight each channel in the 

feature map, then calculate the channel-by-channel 

average value of the feature map to get the heat map. 

The weighted average method for a certain class of 

feature maps [7] can be expressed as: 

,

1 c
c

k k
i j i j

y

Z A



=


                     (4) 

, Re ( )c c k

i j k

k

L LU A=                   (5) 

c represents the output class,  
,

c

k

i j

y

A




represents the 

gradient of the class relative to the output feature 

map, 
c

k represents the mean gradient value of a 

particular feature map, Ak represents each channel of 

the feature map sample, ,

c

i jL  represents the channel-

by-channel average value of the feature map, that is 

the heat map. 

Use the add-weighted algorithm [17] to calculate 

the sum of the corresponding values of each channel 

of the original image and the heat map to achieve 

defect location. The expression is: 

 , ,

c c

i j i jdst X L gamma= + +               (6)
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Figure 5. Grad-CAM principle diagram. 

 

dst represents the output location map matrix, ,

c

i jX  

represents the pixel matrix of each channel of the 

original input image, and gamma represents the 

scalar value added to the sum of weights. 

3. Experiment and Result Discussion 

3.1. Data Collection, Analysis and Distribution 

One of the main problems restricting the 

lithography process is the variety of defects. As 

shown in Figure 6, the lithography defects involved 

in this study include water pollution, collapse and 

residue.   

 

 
Figure 6. Three types of lithography defects and defect-

free images. 

 

Water pollution is the main problem of the 

immersion lithography process. The remaining water 

stains will change the chemical sensitivity of the 

photoresist, cause degradation of the photoresist 

performance, and ultimately lead to local bridging. 

Collapse is caused by the surface tension of the 

water in the development process, which will cause 

large-area bridging. Residue is mainly caused by the 

incomplete cleaning step after the filter plate contact 

exposure during the photoresist etch-back process, 

and the light is completely blocked during the 

etching process of the wafer, which may cause 

missing or broken lines. According to the source of 

the defects, observe the image and analyze: the 

characteristic of water pollution is that the edge is 

diffuse and the shape is roughly elliptical; the 

characteristic of collapse is that the coverage area is 

large and the lines are sticky; and the characteristic 

of residue is that the edge is closed, distributed in 

blocks or dots. In this study, a comparison 

experiment was conducted on three types of defects 

by introducing defect-free images.   

As shown in Table 2, the collected data is 

divided into training set, validation set and test set. 

The Training set will be used multiple times for 

feature extraction and data fitting, the validation set 

is used for the same number of times as the training 

set, preliminarily evaluate the performance of the 

model to determine whether the Training process has 

over-fitting, the test set is used only once to evaluate 

the generalization ability of the final model. 

 

3.2. Data Preprocessing 

Data preprocessing is an indispensable work 

before model training, and a prerequisite to ensure 

smooth model training, including interference 

removal and data augmentation. 

Interference removal part: Since the data sets 

are all SEM images, it is inevitable that there are 
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Table 2. Data distribution. 

 Water pollution Collapse Residue Defect-free 

Training set 68 64 34 109 

Validation set 16 19 15 37 

Test set 12 13 10 21 

Total 96 96 59 167 

 

 

measurement scales or light caused by human factors 

in the image. If there is interference in some data, 

other features that are irrelevant to the classification 

task will be extracted by the network, causing 

network fluctuations, and seriously affecting the 

performance of the model. Therefore, each sample 

image needs to be checked for interference. If 

interferences such as rulers and light spots are 

located at the edge of the image, these must be 

cropped; if the interference is inside the image, crop 

the largest size that does not include the interference.  

Data augmentation part: Due to the limited data 

available, data augmentation of the training set 

images involves normalization, rotation, translation, 

horizontal flipping, random cross-cutting 

transformation and filling of newly created pixels. 

Normalization can compress the distribution value of 

image pixels from 0-255 to 0-1, which not only 

facilitates subsequent data processing, but also 

makes the convergence faster during network 

training. Rotation, translation, horizontal flip, 

random cross-cutting transformation, and filling of 

newly created pixels are data expansion of training 

samples. This process is implemented by Image Data 

Generator, which enables the model to observe 

richer image content. Since the data generated by 

this method is highly correlated with the original 

image, it cannot be used for validation data and test 

data. 

3.3. Model Training, Validation and Testing 

We use the training set to train two fine-tuned 

neural network models, the validation set to monitor 

the network fitting status, and the test set to evaluate 

the final performance of the model. The learning rate 

is adjusted to 10-5 after several attempts. The Early 

Stopping callback function is used to interrupt the 

current training when the validation accuracy is not 

improved for more than 10 rounds, and the Model 

Checkpoint callback function is used to not 

overwrite the model file when the validation loss is 

not improved, so that the network is always in best 

state. 

3.3.1. VGG16 

Figure 7 shows the evolution of training and 

validation accuracy with epochs for VGG16 model. 

The horizontal axis represents the training epochs, 

the vertical axis represents the accuracy value, and 

the blue line and the green line respectively show the 

change trend of training accuracy and validation 

accuracy. Due to the use of more data augmentation 

in the training set, the data distribution has changed, 

resulting in the validation accuracy being slightly 

higher than the training accuracy in the early stage of 

training. The training and validation accuracy are 

almost monotonously improved, tending to be flat, 

and no over-fitting with the increase of epochs, 

indicates that the network is in continuous 

convergence. 

 

 
Figure 7. Evolution of training and validation accuracy 

with epochs for VGG16. 

 

Table 3 shows the performance of the VGG16 

model on the test set in the form of a confusion 

matrix. As can be observed from this table, there is 

only two false negative and one false positive. We 

remind the readers that classification accuracy is the 

ratio of defective images that are being classified 

correctly to the total number of defective images, 

which is obtained by dividing the sum of diagonal 

elements by the total elements (94.6%). 
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Table 3. Confusion matrix of predicted and actual class under VGG16 model. 

 

Test set 

(N=56) 

  

Water pollution 

Actual 

Collapse 

 

Residue 

 

Defect-free 

 Water pollution 11 1 0 1 

Predicted Collapse 0 12 0 0 

 Residue 0 0 10 0 

 Defect-free 1 0 0 20 

 

Table 4. Confusion matrix of predicted and actual class under VGG19 model. 

 

Test set 

(N=56) 

  

Water pollution 

Actual 

Collapse 

 

Residue 

 

Defect-free 

 Water pollution 11 1 0 2 

Predicted Collapse 0 12 1 0 

 Residue 0 0 9 0 

 Defect-free 1 0 0 19 

 

3.3.2. VGG19 

Figure 8 shows the evolution of training and 

validation accuracy with epochs for VGG19 model. 

With the increase of epochs, the training accuracy is 

monotonously improving, while the validation 

accuracy increases rapidly at first, slowly in 20-40 

epochs, and then stabilizes. Indicates that the 

network is fitted in advance. If continue to train, it 

will lead to over-fitting. 

 

 
Figure 8. Evolution of training and validation accuracy 

with epochs for VGG19. 

 

Table 4 shows the performance of the VGG16 

model on the test set in the form of a confusion 

matrix. As can be observed from this table, there is 

three false negative and two false positive. The 

classification accuracy is obtained by dividing the 

sum of diagonal elements by the total elements, 

which is 91.7%. 

It can be seen that although the training 

 

accuracy of the VGG19 model with more layers is 

slightly higher than that of VGG16, the validation 

and test accuracy of the former are not as good as the 

latter. It proves that the reason is caused by the 

relatively complex architecture of VGG19, which 

leads to poor adaptation to the lightweight data set. 

At the same time, we note that the false-negative 

images in both these models are the same types of 

images. We expect that by including more such 

images in our training dataset, our model might be 

able to pick that defect as well. 

 

3.4. Visualization 

3.4.1. Visualize Intermediate Activation 

Figure 9 shows typical activation maps of four 

different classes of input images in the first four 

layers of the network. Layer 1 is a collection of 

various edge detectors. At this stage, activation 

almost retains all the information of the defective 

image. The function of Layer 2 is to highlight 

various useful feature information such as defect-

specific block spots, textures, irregular lines, etc. to 

prepare for the feature extraction of the later layers. 

Layer 3 and 4 perform information distillation on the 

activation map of the previous layer, filter out 

useless information such as background patterns, 

regular lines, etc., enlarge and refine useful 

information. With the gradual deepening of the 

number of layers, the intermediate activation 

becomes abstract, contains less and less visual 

information and more and more abundant 

information of the class. 
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Figure 9. Visualized intermediate activation of the network. 

 

Figure 10. Defect location maps of the three classes. 

3.4.2. Defect Location 

Figure 10 shows the original image, heat map 

and location map of the defects. The more obvious 

the defect is, the darker the color of the heat map  

 

display. After using the add-Weighted function to 

mix the original input image and the heat map, the 

heat distribution of the defect is added to the original 

image to achieve accurate positioning. 
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4. Conclusion 

In this paper, we first demonstrated the 

recognition and classification of several lithography 

defects based on transfer learning. Through the 

training, validation and test of the two fine-tuned 

VGG16 and VGG19 neural network models, high 

classification accuracy (94.6% and 91.7%) of three 

types of defective images and defect-free images 

with a large feature span is achieved. Comparing the 

structural characteristics and classification results of 

the two models at the same time, it is found that the 

network with fewer layers and clearer structure is 

unlikely to occur over-fitting and has better 

performance when the data set is very small. It can 

be seen that the neural network model with fewer 

parameters has a better classification effect on 

lightweight data set. 

This paper also analyzes which characteristics 

of the defects make the final classification decision 

by visualizing the intermediate activation of the 

network, and shows the process of the network 

gradually extracting the deep features of the 

defective images. Finally, the Grad-CAM technology 

is used to achieve rapid and accurate positioning of 

defects. Although it has not undergone explicit 

training, the model demonstrated remarkable defect 

recognition and location capabilities, proving its 

deployment potential in integrated circuit 

manufacturing. 
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